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ABSTRACT
Contaminant releases in or near a building can lead to significant human exposures unless
prompt response measures are taken.  However, selecting the proper response depends in part
on knowing the source locations, the amounts released, and the dispersion characteristics of
the pollutants.  We present an approach that estimates this information in real time.  It uses
Bayesian statistics to interpret measurements from sensors placed in the building yielding best
estimates and uncertainties for the release conditions, including the operating state of the
building.  Because the method is fast, it continuously updates the estimates as measurements
stream in from the sensors.  We show preliminary results for characterizing a gas release in a
three-floor, multi-room building at the Dugway Proving Grounds, Utah, USA.
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INTRODUCTION
Effective response to unexpected pollutant releases in buildings often requires knowing the
source locations, the amounts released, and the duration of the event.  However, merely
measuring airborne pollutant concentrations using sensors may not reveal this information.
Complex airflows typically found in multi-room, multi-floor buildings will often quickly
disperse the pollutant throughout the building, leaving insufficient time for the sensors to
adequately sample the temporal and spatial profiles of the event.  Therefore, sensor
measurements must first be interpreted.  Moreover, they must be interpreted quickly and
continuously as the measurements stream in from the sensors.

Traditional data interpretation algorithms, like optimization, Gibbs sampling, and Kalman
filtering, are inadequate for this task.  They rely either on simplifying assumptions that are not
often met in many indoor pollutant transport systems, or on time-consuming inverse models,
which must repeatedly run computationally-intensive fate and transport models after an event
has begun (Sohn et al., 2002).

We present an alternative algorithm which uses Bayesian statistics.  Our approach succeeds,
where traditional methods fail, because it decouples the simulation of predictive fate and
transport models from the interpretation of measurements.  Time-consuming airflow and
pollutant transport predictions and uncertainty estimates are computed prior to a pollutant
release.  This allows for rapid data interpretation during an event.  The technique may be used
to estimate the location, magnitude, and duration of the release, to characterize any unknown
or variable building or weather conditions, and to predict future pollutant transport in the
building.  Though Bayesian statistics have been applied to several environmental fields (see
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Sohn et al. 2002 for a list of recent applications), using it to decouple indoor airflow and
transport modeling from data interpretation has, to our knowledge, not been previously
reported in the literature.

The objectives of this paper are thus to (1) present our Bayesian approach for interpreting
sensor data in real time, and (2) demonstrate the approach by successfully detecting and
characterizing a pollutant release in a real multi-floor building.

APPROACH
The Bayesian data interpretation approach is divided into two stages.  First, in the pre-event or
simulation stage, all of the time-consuming tasks associated with data interpretation are
completed before a pollutant release occurs.  A model of the building's indoor airflow and
pollutant transport is developed, and input parameters for the model are selected.  Any
unknown or variable model input, like the location and duration of the pollutant, or the HVAC
operating mode, is assigned an uncertainty distribution that describes the probabilistic range
of possible values.  Generally, wide distributions are assigned given the limited prior
information.  Next the user generates a library of model realizations by sampling the space of
the model parameters using Monte Carlo, or other sampling technique, and predicting airflow
and pollutant transport for each set of parameters.  Each model realization and model
simulation represents a possible building operating condition and pollutant release scenario.
Thus, sufficient sampling of the uncertainty distributions is essential to represent the full range
of possible building and pollutant release conditions.  The resulting library of simulations may
consist of several thousand scenarios.

The second stage of the Bayesian approach, data interpretation, takes place during a release
event.  The algorithm compares data streaming in from sensors to the library of pollutant
transport predictions using a structured probabilistic method referred to as Bayesian updating
(Brand and Small, 1995 and Sohn et al. 2002).  Bayes' rule allows us to quickly estimate, and
update, the level of agreement between model predictions and the observed data while
accounting for the effects of error in the measurements, correlation or averaging of the spatial
and temporal data, and any imperfect model representation.  See Sohn et al. (2002) for a full
description of the technique.  To summarize the process, each realization in the library is
compared to the data to assess the likelihood that the realization describes the event in
progress.  A realization with predictions that fit the sensor data well will have a high
likelihood estimate.  This in turn suggests that the model inputs used to generate that
realization in the pre-event simulation stage has high probability of describing the event in
progress.  Comparing the relative fits for each realization using Bayesian statistics allows us
to estimate the best-fitting suite of model inputs and the associated uncertainty.

This second stage of the approach is mathematically simple and can be executed very quickly,
much quicker than the rate at which new data will likely arrive from sensors.  As long as the
original library of simulations provides adequate coverage of the model and input parameter
space, the data interpretation during the event can be conducted without further evaluation of
the flow and transport models.

APPLICATION
We applied our approach to locate and characterize a pollutant release in a three-floor, multi-
room building at the Dugway Proving Grounds, UT.  Figure 1 illustrates the building and
shows the floorplan of the first floor.  The first and second floors each consist of three rooms



and a stairwell landing.  The third floor consists of a large attic space and a stairwell landing.
An air handling unit (AHU) supplies air to the first and second floors and returns air only
from the first floor.  Researchers from Lawrence Berkeley National Laboratory (LBNL)
conducted extensive blower door tests on the building to determine interzonal flow parameters
and leakage rates.  They also conducted twelve tracer experiments in the building releasing
puffs of propylene gas at various release points and under several operating conditions of the
AHU.  Details of the experimental design were discussed by Sextro et al. (1999).
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Figure 1: The three-floor building and plan view of the first floor with air handling unit.

Table 1.  Uncertainty in the source and building characteristics.

Parameter Range
Source Location 10 locations, consisting of any of the rooms and

stairwell.  Each location is assumed to be equally
likely.

Source Duration 1 sec to 5 min.  Log-uniform distribution.
Source Amount 10 to 100 grams.  Log-uniform distribution.
Status of Door Positions 3 scenarios, all equally likely: (1) all interior doors

open, (2) all interior doors closed, (3) stairwell
doors closed, all others open.

In the simulation stage of the Bayesian approach, we hypothesized about the types of pollutant
releases that might occur in the building, and assigned uncertainty ranges to the release
characteristics (Table 1).  We then generated a library of five thousand airflow and pollutant
release scenarios by sampling the uncertainty ranges using Latin Hypercube sampling
techniques.  Airflow and pollutant concentrations in air were predicted for each scenario using
the COMIS model, which had been validated previously with experiments conducted in this
building (Sextro et al. 1999).

In the data interpretation stage, sensors would be placed at various locations in the building to
measure airborne concentrations.  The sensors would report the measurements in real-time to
the monitoring computer, where they would be interpreted by the algorithm.  In the actual
experiments conducted at Dugway, propylene detectors were placed in every room and at each
stair landing, for a total of eleven sensors.  Concentration data were recorded continuously at
20 second intervals.  A sample of the data from one of the experiments is shown in Figure 2 at



three locations within the building for the first ten minutes of the experiment.  In order to test
our algorithm, we used data from this experiment, which consisted of a release of ~20 grams
of propylene gas into the HVAC return intake in room 1.2a with the HVAC operating.  To
ensure that our test was valid, we ‘blinded’ our interpretation algorithm to the actual location
and release conditions (see Table 1).  The interpretation method was applied for an unknown
source location, just as would be the case for a potential release in a real building.  For our
simulated exercise, we assumed that each data point was reported to the monitoring computer
– in this case essentially simultaneously, though the reporting could be asynchronous.
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Figure 2: Sensor measurements in room 1.2a (first floor), the stairwell landing on the second
floor, and the attic (third floor).  Twenty grams of propylene were released in room 1.2a in one
second.

Based on the data from all eleven sensors, the interpretation algorithm reports estimates for all
of the unknown model inputs, which are updated every 20 seconds.  Figures 3a and 3b show
the source location probability for two different rooms.  It should be noted that at time t=0, the
probability of the source location is equal for each room.  As can be seen in Figures 3a and 3b,
the interpretation algorithm takes less than two minutes to identify the source location (room
1.2a) with high probability.

Since sensors were placed in each room, one might conclude that the location with the highest
concentration would always be the release location  However, that is correct only when the air
is sampled when the source is on and releasing at a constant rate.  In this experiment, the
release lasted for only one second and the sensors first sampled nineteen seconds after the
source stopped.  The estimation is further complicated by the AHU quickly dispersing the
pollutant throughout the building.

As an example of updating other uncertain model input parameters, Figure 4 shows the
algorithm's estimate of the total mass released as it refines that estimate every 20 seconds.
The median estimate quickly converges on the correct amount released and uncertainty
gradually narrows with each sampling interval.  Similar results were found for the other
unknowns identified in Table 1, but are not shown.
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Figure 3: Estimates of the probability that the source is located in room (a) 1.2a and (b) 2.2.
At t=0 seconds (before data interpretation begins), the source is assumed be in any of the ten
locations with equal probability (i.e., probability = 1/10).
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Figure 4: Estimates of the total amount released.  At t=0 seconds (before data interpretation
begins), the estimate is based on the initial uncertainty defined in Table 1.  The solid circle
and uncertainty range represent the median and 90 percent confidence interval, respectively,
and the horizontal line denotes the actual amount released.

CONCLUSION AND IMPLICATIONS
This paper presents a Bayesian approach for interpreting sensor measurements in real time.  It
differs from other model parameter estimation methods by decoupling the simulation of
airflow and pollutant transport from the interpretation of measurements.  This allows us to
divide the data interpretation into two parts.  The simulation stage completes all of the time
consuming tasks, such as development of airflow and pollutant transport models, uncertainty
characterization, and simulation of pollutant transport, and compiles the scenario simulations
into a library of results.  The data interpretation stage quickly accesses this library as data
stream in during an event.

We demonstrated the approach by analyzing a gas release in a three-floor building.  While the
results are preliminary, they illustrate how our approach can quickly interpret data.  The



approach quickly and correctly identified the source location and the release amount.  Though
not illustrated here, the algorithm also correctly identified, in less than two minutes, both the
duration of the tracer gas release and whether doors were open or closed.  Lastly, it correctly
predicted the future dispersion of the pollutant in the building.

In future work, we will use our approach to guide sensor deployment.  Decoupling data
interpretation from model evaluation allows us to compare the performance of many
hypothetical sensor operating conditions and sensor locations.  Such comparisons could help
identify the requirements for a sensor network, including the number, sensitivity, and response
time of sensors, based on the desired performance of a data interpretation algorithm in any
given building.
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